Request Inspection Copy

If you are an Academic or Teacher and wish to consider this book as a prescribed textbook for your course, you may be eligible for a complimentary inspection copy. Please complete this form, including information about your position, campus and course, before adding to cart.

* Required Fields

To complete your Inspection Copy Request you will need to click the Checkout button in the right margin and complete the checkout formalities. You can include Inspection Copies and purchased items in the same shopping cart, see our Inspection Copy terms for further information.

Any Questions? Please email our text Support Team on text@footprint.com.au

Submit

Email this to a friend

* ALL required Fields

Order Inspection Copy

An inspection copy has been added to your shopping cart

Holder Continuous Euler Flows in Three Dimensions with Compact Support in Time

by Philip Isett Princeton University Press
Pub Date:
01/2017
ISBN:
9780691174839
Format:
Pbk 216 pages
Price:
AU$152.00 NZ$155.65
Product Status: Available in Approx 14 days
add to your cart
Instructors
& Academics:

Other Available Formats:

Motivated by the theory of turbulence in fluids, the physicist and chemist Lars Onsager conjectured in 1949 that weak solutions to the incompressible Euler equations might fail to conserve energy if their spatial regularity was below 1/3-Hölder. In this book, Philip Isett uses the method of convex integration to achieve the best-known results regarding nonuniqueness of solutions and Onsager's conjecture. Focusing on the intuition behind the method, the ideas introduced now play a pivotal role in the ongoing study of weak solutions to fluid dynamics equations.   


 


The construction itself - an intricate algorithm with hidden symmetries - mixes together transport equations, algebra, the method of nonstationary phase, underdetermined partial differential equations (PDEs), and specially designed high-frequency waves built using nonlinear phase functions. The powerful "Main Lemma"--used here to construct nonzero solutions with compact support in time and to prove nonuniqueness of solutions to the initial value problem--has been extended to a broad range of applications that are surveyed in the appendix. Appropriate for students and researchers studying nonlinear PDEs, this book aims to be as robust as possible and pinpoints the main difficulties that presently stand in the way of a full solution to Onsager's conjecture.
Philip Isett is assistant professor of mathematics at the University of Texas, Austin.