Request Inspection Copy

If you are an Academic or Teacher and wish to consider this book as a prescribed textbook for your course, you may be eligible for a complimentary inspection copy. Please complete this form, including information about your position, campus and course, before adding to cart.

* Required Fields

To complete your Inspection Copy Request you will need to click the Checkout button in the right margin and complete the checkout formalities. You can include Inspection Copies and purchased items in the same shopping cart, see our Inspection Copy terms for further information.

Any Questions? Please email our text Support Team on


Email this to a friend

* ALL required Fields

Order Inspection Copy

An inspection copy has been added to your shopping cart

Resonance And Bifurcation To Chaos In Pendulum

by Albert C J Luo World Scientific / Higher Education Press, China
Pub Date:
Hbk 252 pages
AU$196.00 NZ$201.74
Product Status: Out of stock. Not available to order.
A periodically forced mathematical pendulum is one of the typical and popular nonlinear oscillators that possess complex and rich dynamical behaviors. Although the pendulum is one of the simplest nonlinear oscillators, yet, until now, we are still not able to undertake a systematical study of periodic motions to chaos in such a simplest system due to lack of suitable mathematical methods and computational tools. To understand periodic motions and chaos in the periodically forced pendulum, the perturbation method has been adopted. One could use the Taylor series to expend the sinusoidal function to the polynomial nonlinear terms, followed by traditional perturbation methods to obtain the periodic motions of the approximated differential system.This book discusses Hamiltonian chaos and periodic motions to chaos in pendulums. This book first detects and discovers chaos in resonant layers and bifurcation trees of periodic motions to chaos in pendulum in the comprehensive fashion, which is a base to understand the behaviors of nonlinear dynamical systems, as a results of Hamiltonian chaos in the resonant layers and bifurcation trees of periodic motions to chaos. The bifurcation trees of travelable and non-travelable periodic motions to chaos will be presented through the periodically forced pendulum.